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Abstract

Granular resource heterogeneity refers to the phenomenon
in which small computational units within or across appli-
cations exhibit distinct resource usage patterns. Traditional
resource management in shared clusters lumps monolithic
applications into coarse categories, overlooking smaller exe-
cution phases that differ in resource demands.
We introduce hiresperf, an extensible profiler that

investigates resource usage at 10-microsecond intervals at-
tributed to each function invocation, with a low overhead.
We show that using hiresperf for either offline analysis
or real-time monitoring can exhibit the granular resource
heterogeneity without manually decomposing applications
for profiling. Armed with the fine-grained insights, resource
managers, batch schedulers, and serverless runtimes can
proactively schedule and migrate tasks to minimize interfer-
ence and boost utilization at the same time.
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1 Introduction

Modern applications are increasingly deployed in shared clus-
ters. These are managed by infrastructure providers, who
often co-locatemultiple programs on the samemachine. Clus-
ter resource management involves reserving virtual CPUs
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(vCPUs) and memory capacity for each application. Beyond
these allocations, applications also utilize shared system re-
sources (e.g., DRAM and I/O bandwidths). Different appli-
cations may have widely-varying demands on these shared
resources; we call this resource demand heterogeneity 1.
Understanding resource demand heterogeneity can help

minimize resource contention for co-located applications.
To determine how programs contend for memory, L3-cache,
I/O bandwidth, etc., current techniques measure resource
usage at runtime [8, 23, 37, 40]. Often, these approaches
measure aggregated resource usage at coarse timescales (e.g.,
one minute) [8], and feed this data to cluster schedulers that
manage resource allocation at the granularity of monolithic
applications or jobs.
In this paper, we assert that aggregated resource usage

monitoring is a poor fit for efficient resource allocation in
shared clusters of the future. Increasingly, these clusters offer
computing frameworks such as serverless computing and
resource disaggregation [20, 32, 35, 36, 41]. In these frame-
works, applications are decomposed into granular computing
tasks, which permits greater flexibility for task scheduling
on shared resources, and thereby achieves higher utilization
and scalability. In this setting, resource demand heterogene-
ity may exist not just across applications, but also across
granular computing elements (i.e., pieces of a program, such
as individual functions, either of monolithic applications or
native serverless tasks). Moreover, these individual functions
may execute for short durations (milliseconds to a few tens
or hundreds of microseconds).
In this paper, we explore granular resource demand het-

erogeneity — heterogeneity in resource requirements of an
application’s granular components at fine timescales. For
applications exhibiting such heterogeneity, we ask: can we
simultaneously achieve low interference and high utiliza-
tion?
To demonstrate granular heterogeneity, consider a full-

text search server built with a C++ port [42] of Apache
Lucene [4]. The server indexes input text and holds it in mem-
ory, then serves search queries. One component of a Lucene
search is the createWeight function. This parses the
query to build an internal representation of rules for evalu-
ating relevance. Then the score function iterates through
the indexed documents to perform evaluations.

1In contrast, the diversity of resource offerings across different hardware is
referred to as hardware heterogeneity.
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Figure 1: Hiresperf-generated timeline of a Lucene++ search
invocation. Effective stack sampling interval about 5 𝜇s, effective
PMUs polling interval about 11 𝜇s.

Function Time (𝜇𝑠) MemBW (bytes/𝜇𝑠) Inst per 𝜇𝑠

createWeight 18.5 117 4395
score 71.1 218 2909

Table 1: Resource usage of Lucene++ functions profiled by hiresperf,
averaged from an experiment of 460K query requests

During a search query, memory bandwidth and in-
struction pipeline usage change over time, as the CPU
frequency is constant. Figure 1 demonstrates this for a
search operation taken from a corpus of 40K searches.
Table 1 shows the averaged resource usage metrics of
these recorded functions. Each function executes for tens
of microseconds, but has widely varying resource usage.
In Table 1, createWeight exhibits a lower average
DRAM access rate and higher instruction rate, indicating its
job is more computation-heavy. Conversely, score uses
roughly double the DRAM bandwidth and has 34% less
instruction rate than createWeight. score executes
fewer instructions per unit time because the chip’s pipeline
resources are less utilized partially due to more operations
blocked by memory accesses. In fact, score incurs 33%
more cycle stalls (not shown) than createWeight when
there are pending memory operations 2. This example
demonstrates granular intra-application heterogeneity

of resource demands, as distinct from inter-application

heterogeneity that has long been exploited. Notably,

2Although this performance counter does not imply a causal relationship be-
tween memory access and stalls, it helps differentiate between computation-
bound and memory-bound program pieces

obtaining resource usage at such fine timescales is itself
a challenge; we discuss later how we obtain this without
executing each function in isolation.

Beyond monolithic applications, granular resource hetero-
geneity also naturally arises in serverless computing, where
sharing instances among small tasks is commonplace. For in-
stance, a video encoding task [10] and a 3D-printing heat con-
trol [31] task, both leveraging Function-as-a-Service (FaaS)
platforms, have vastly different demands for network band-
width. Specifically, the former needs to transmit video frames
of up to tens of megabytes, whereas the latter only transmits
tens of kilobytes of vectors after initialization.
Given this, we argue that to better control resource con-

tention and increase utilization, cluster management should
be granular heterogeneity-aware, i.e., aware of the fine time-
scale resource needs of individual functions of monolithic
or serverless applications. To achieve this, we must address
two questions: (1) how do we effectively track and estimate
granular resource usage and (2) how can cluster schedulers
exploit knowledge of granular heterogeneity to control con-
tention and improve utilization.
For the first question, we present hiresperf, a

lightweight software profiler designed for measuring
intra-application heterogeneity (Section 3). For the second,
we discuss (Section 4) promising use cases and compare
them with existing resource management approaches.

2 Background and Motivation

We begin by describing related work in interference-aware
cluster management, then make the case for efficient tech-
niques to measure granular heterogeneity.

2.1 Interference aware cluster management

In recent years, as the number of CPU cores on a single
chip has continued to increase, shared compute platforms
have increasingly begun co-locating applications. Orches-
trating co-located applications usually involves reserving
a pre-defined number of vCPUs and memory. Even with
reserved resources, co-location can result in unpredictable
performance degradation [24], due to contention for shared
architectural resources and I/O bandwidth. In response to
this, prior work has established the need for understanding
heterogeneous resource demands among co-located appli-
cations. This line of work has extensively investigated tech-
niques to characterize shared system resources required by
different applications as well as to quantify how each is sensi-
tive to contention. Scheduling and orchestration techniques
can use these characterizations to minimize contention.

However, much of this work has focused on coarse-grain
resource heterogeneitymeasurements formonolithic applica-
tions. For example, Paragon [8], estimates resource demand



Granular Resource Demand Heterogeneity HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

heterogeneity for programs aggregated over a minute or
longer. In their setting, this was necessary since applications
are multi-faceted in terms of resource consumption, and a
longer profiling interval can cover more program phases or
events. NuCore [40] has explored shorter timescales (e.g., 50
milliseconds), but it still characterizes an application as a
homogeneous entity. Even though these aggregated metrics
ignore fine-grained fluctuations within the application, they
were sufficient for earlier cluster schedulers, since individual
resource usage spikes of individual threads were often sta-
tistically multiplexed across hundreds of concurrent threads,
resulting in minimal system-wide impact. As such, these
coarse-grained characterizations were sufficient for cluster
management systems to decide which applications should
share an instance to control the contention levels [8, 23].
More recent work has demonstrated the existence of de-

mand heterogeneity at finer timescales within specific ap-
plications and explored ways to exploit it. For example, a
DNN training task often alternates between computing and
data loading. So a scheduler [39] can overlap one task’s peak
computing and memory capacity with another task’s peak
memory bandwidth. Similarly, Spark defines a high-level
data processing workflow so that each Spark task can be
transiently decomposed into computing, disk, and network
IO phases, revealing scheduling opportunities to minimize
resource contention [29]. However, to the best of our knowl-
edge, such intra-application heterogeneity has not been ex-
ploited for scheduling generic computing tasks.

2.2 Granular and serverless computing

frameworks

With the advent of FaaS, recent research has proposed ways
to decompose monolithic applications into small pieces
(stateless or stateful) that don’t all reside on specific server or
virtual machine (VM) instance [32, 33, 38]. These approaches
allow instantaneous on-demand scaling, fast migration, and
the ability to exploit “otherwise-stranded” resources (e.g.,
the idle CPU cores on an instance whose memory is almost
full) [32]. These features improve cluster-wide resource
utilization and achieve high elasticity for the applications.
High-performance computing researchers have considered
similar ideas [35], in which tasks can dynamically scale at
the granularity of threads and migrate across VMs shared
by multiple applications.
However, the inherent diversity among serverless-style

tasks has not received much attention [18]. Major state-of-
the-art open-source FaaS platforms rely on simple vCPU
and memory capacity quotas set by the user [3, 19, 27]. De-
spite these quotas, co-located FaaS applications can contend
for shared resources (e.g. memory bandwidth), resulting in

degraded performance. This remains one of the biggest ob-
stacles to QoS-centric FaaS use cases, next to cold-start la-
tency [13, 36, 45].

2.3 The need for novel profilers for

granular heterogeneity

Characterizing granular heterogeneity, especially intra-
application heterogeneity, remains a challenge. Potentially,
one could decompose and micro-benchmark individual
components to obtain fine-grained characterization, but this
approach is usually cost-prohibitive at scale and requires
significant manual effort. As such, only extremely popular
applications use this approach because their use justifies the
cost [12]. Moreover, this approach can be inaccurate since it
may not capture the impact of synchronization events (e.g.,
lock waits). An ideal approach would characterize granular
heterogeneity after an application is deployed, and with
real workloads. Such an approach would directly profile
monolithic applications with low overhead.
This granular heterogeneity profiler should satisfy three

objectives. It should:

O1: Collect resource usage data at fine time-scales (down to
microseconds),

O2: Attribute each data point to one or more program pieces
invoked by specific corresponding threads,

O3: Incur low-enough overhead to not perturb program be-
havior, and permit real-time monitoring in production.

Today, state-of-the-art profilers like Intel VTune [15],
Linux perf, and OProfile [28] rely on hardware performance
monitoring units (PMUs) [16] to reveal the utilization of
architectural resources. However, these profilers do not
satisfy the requirements listed above. Linux perf’s statistical
sampling cannot distinguish different invocations of the
same function, so it cannot detect demand heterogeneity
within a single function called during different program
stages (Section 3.2). Thus, perf fails to satisfy O2. VTune
does support timeline analysis, but it incurs high overhead
(Figure 4) for short sampling intervals, thus failing O3.
Moreover, VTune is proprietary software and may not be
easy to integrate into larger resource management systems.
Shim [43] achieves ultra-fine resolution with negligible
program perturbation. However, Shim is designed for
hand-tuning program performance rather than estimating
demand heterogeneity and occupies all hyper-thread
siblings for polling core-specific performance counters,
which is prohibitively expensive for profiling deployed
workloads.
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Figure 2: Hiresperf overview. Resource monitoring is in yellow
and program tracing is in blue.

3 Hiresperf: A Granular Resource Profiler

In this section, we describe hiresperf, a profiler special-
ized for measuring granular resource heterogeneity. Hires-
perf satisfies the objectives listed in Section 2.3. Currently,
it monitors each function invocation’s memory bandwidth,
instruction retiring rate, and CPU frequency. Hiresperf can
be extended to monitor caches and I/O usage, but we have
left this to future work.

3.1 Hiresperf design

Like VTune [15], Hiresperf also uses hardware PMUs to
monitor resource usage. To ensure extensibility, permit both
offline or real-time monitoring, and to support multiple pro-
gramming languages, we decouple its resource monitoring
and program tracing components, as shown in Figure 2.

For resource data, we use a dedicated Linux kernel module
that periodically launches inter-processor interrupts (IPIs)
to the monitored set of CPU cores. Each IPI triggers an in-
terrupt handler, which reads the core’s PMU counters and
writes the timestamped results to a per-core buffer. On all
Intel Xeon CPUs since Skylake, the handler can poll last-
level cache misses and software prefetches to estimate 3 the
core’s DRAM bandwidth usage. On Sapphire Rapids and
most newer microarchitectures, hiresperf can be configured
to poll offcore counters 4 for better accuracy. In practice, this
gives less than 5% error compared to Intel PCM [14]’s results.
For tracking control flows, we adopt the stack sampling

mechanism from LDB [7]. The stack scanner of LDB can un-
wind each thread’s stack without interrupts. Compiled with
3The accuracy varies on different CPUs. In our experiments, the last-level
cache miss counters on Intel(R) Xeon(R) Gold 5420+ provided very accu-
rate estimations, but Intel(R) Xeon(R) Platinum 8380 (Chameleon’s com-
pute_icelake_r750 instance) leaded to values that largely deviated from the
PCM collected results, despite the profiled program did not change.
4Namely, we use OCR.READS_TO_CORE.DRAM for reads and
OCR.MODIFIED_WRITE.ANY_RESPONSE for writes.

Figure 3: Averaged resource usage metrics for every function
invocation of a velox program. All records of QuickSort and
eval are shown. CALL_OPERATOR data points are randomly
sampled from 15K recorded invocations.

LDB-instrumented Clang, C/C++ programs write a canary
and a generation number in each stack frame, for avoiding
data races and distinguishing between consecutive occur-
rences of the same stack frame. Carefully designed to mini-
mize cache-thrashing and to avoid data races, stack sampling
effectively constructs a wall-clock timeline of every single
function invocation. By consulting the scheduling history,
hiresperf can annotate this per-thread timeline with the in-
formation of the core(s) a thread runs on.
We also developed a toolkit to efficiently consolidate

the timelines and facilitate various analyses. Furthermore,
hiresperf is modular. The PMU polling component generally
works for all Intel platforms and is agnostic to the program
language. The stack sampling component can be replaced
by other language-specific tracing systems or even a tracer
integrated into a serverless runtime, for example.

3.2 Hiresperf in Action

To demonstrate how hiresperf reveals granular heterogeneity
(achieving O1 and O2), we use a data analysis example pro-
gram built on the velox [30] execution engine. The program
involves aggregations, projections, and OrderBy operations
running on different threads, and hiresperf records resource
metrics associated with the functions performing these op-
erations. For simplicity, threads are pinned to physical cores
and the small number of cores does not saturate memory
bandwidth. As shown in Figure 3, one data point stands for
one function invocation, and functions of different opera-
tions form several clusters in the memory vs. compute space.
These clusters show how operations differ from each other in
terms of resource utilization. Notably, there are two clusters
of the function eval, which is used for two distinct pro-
jection queries, and one of them consumes about 5× more
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Figure 4: Hiresperf overheads on different apps. STREAM bench-
mark [25] is memory bandwidth aggressive, the prime checker
is pure computing, and Streamcluster is in the middle. Note that
VTune’s sampling interval is set to 100us, an order of magnitude
longer than hiresperf’s. Also, VTune 2024.3.0 command line cannot
customize performance event selection.

DRAM bandwidth than the other. This illustrates the need
for O2.

When running this test, hiresperf has effective stack sam-
pling interval of 5 𝜇s and PMU polling interval of 11 𝜇s. With
this frequency, it can easily capture the behaviors of short-
lived functions like eval, whose average runtime is only
179 𝜇s.

3.3 Towards Greater Efficiency

We evaluate the overhead of hiresperf, with the same mea-
surement intervals as the above example. Figure 4 shows
overheads imposed on three different programs, which range
from 6-15%. In contrast, VTune overheads with a periodic-
ity of 100 𝜇s are between 19-38%. Of these three programs,
Streamcluster [5] experiences more overhead from stack sam-
pling, because stack scans are more frequent for a program
with higher function churn. In general, for offline analysis,
this overall overhead is still acceptable for this fine a profiling
resolution.
To use hiresperf for real-time monitoring, it may be pos-

sible to reduce the overhead. In our current implementa-
tion, 99% of PMU polling overhead comes from interrupts
alone. We can actually avoid interrupts if the program or the
serverless runtime polls the PMUs from within user-space
and voluntarily reports the results. One practical way to
achieve such interrupt-free profiling is similar to the com-
piler instrumentation approach of stack sampling: reading
performance counters upon function call/return, and then
writing the values within the stack frames so that the stack
scanning component can collect these metrics while tracing
function calls. Initial experiments show that, voluntarily re-
porting PMUs generates no measurable overhead beyond
stack sampling alone.

4 Future Directions for Exploiting Granular

Resource Heterogeneity

Hiresperf’s granular resource monitoring can enable at least
two use-cases, which we sketch below.

4.1 Resource management and scheduling

Resource allocation for QoS-centric systems. User-
facing, latency-critical (LC) applications, especially ones
with varying workloads, can be prone to interference.
Reserving extra resources to minimize interference hurts
overall utilization. Thus, systems like Caladan [11] and
Heracles [21] dynamically allocate resources to LC and
best-effort (BE) tasks. Seeking both utilization and QoS
attainment, their resource schedulers penalize the BE tasks
when LC applications incur increased latency. However,
such reactive approaches have limitations, as they rely on the
premise that a sufficient number of applications are BE, and
throttling resource allocations during contention periods
does not prevent the resource from being underutilized at
other times.
Using hiresperf’s information about granular resource

heterogeneity, a better approach is to proactively schedule
tasks that demand complementary resources together with
the LC applications so that they are unlikely to contend. If
a resource scheduler detects higher response latencies due
to a workload spike, it can trigger migrations of the granu-
lar programs [32, 33] to fit into a new set of resources with
residual capacity. We believe such near-real-time, predictive
decisions are feasible, since Caladan has demonstrated de-
cision times of less than 20 𝜇s when the scheduler runs on
a dedicated core. The challenge lies more in synchronizing
the resource availability among local schedulers in a timely
manner.
Scheduling for batch processing systems. Compute-
intensive workloads consisting of thousands of small jobs
are often deployed on batch processing platforms, including
cloud services like Azure/AWS Batch [1, 26] and on-premise
clusters managed by HPC schedulers like Slurm [34]. Also,
big-data processing frameworks [2, 44] typically have
dedicated clusters. Prior work has identified contention due
to job co-location [6, 22], and developed methods to predict
the interference to guide the job placement. However, such
placements remain static until a job finishes, although
the prediction models are trained with the awareness of
resource utilization varying over time. With hiresperf’s
granular per-task measurements, schedulers can rearrange
placement of in-flight tasks to minimize contention. For
example, a recently-proposed batch processing runtime,
GRANNY [35], can support such migration operations at
synchronization barriers within a job.
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Figure 5: Simulating two scheduling decisions of heterogeneous
velox tasks.

If migrations are infeasible due to large amounts of data as-
sociated with the jobs, we still have some flexibility to sched-
ule the tasks on a machine, as batch jobs have less stringent
latency requirements. As an example, Figure 5 shows two
schedules consisting of two velox operations: the 𝐴 ∗ 𝐵 +𝐶
projection operation which is 5× more memory bandwidth
intensive than the 𝑠𝑖𝑛() projection. In our example, each
operation type has 48 tasks to run. Compared to scheduling
one operation completely after the other, overlapping tasks
with heterogeneous resource demands reduces the average
runtime of the DRAM-intensive task by more than 34% and
the makespan by more than 15%. Of course, other factors of
scheduling (e.g., starvation-proofing) should be considered
in practice, along with contention-avoidance strategies.
Fine-grained scheduling has also been studied without

profiling. Monotasks [29] demonstrate the benefits of parti-
tioning a large task into pieces, with each piece consuming a
single resource type, to achieve performance clarity. Mono-
tasks have been applied to Spark to better expose resource
usage and sometimes reduce contention. However, apply-
ing this to general applications is challenging and involves
significant programmer effort. Fine-grained profilers like
hiresperf may help quantify the bottlenecks of each task au-
tomatically to simplify the process of designing monotasks
for an application.

4.2 Profiler-aided granular disaggregation

To enjoy the benefits mentioned above, monolithic appli-
cations need to be partitioned in the first place. This is

made possible by granular computing platforms like Quick-
sand [32]. Typically, the first factor considered for such par-
titioning is how much data (memory) different components
share. For example, the most bulky data of our Lucene server,
the per-document term frequencies, is accessed by score
but not createWeight. This implies no excessive state
replication or network traffic will be introduced due to sepa-
rating these two components.

Aside from shared state, differences in resource demands
are also important factors to consider when partitioning apps,
especially in a large cluster with heterogeneous hardware.
The rationale is simple: if the components are bottlenecked
on different resource types, they may run faster on hardware
that best fits their needs. For example, a memory-intensive
component can run faster on an instance with more mem-
ory channels, while another component that iterates over
data with high cache-hit rates can run faster on an instance
with higher CPU frequency, etc. Similarly, depending on the
program’s potential for exploiting out-of-order execution,
some components can benefit more from more CPU pipeline
resources. Granular heterogeneity profilers like hiresperf
can identify whether components are memory-, cache-, or
pipeline-intensive. Collectively, such partitioning can im-
prove performance, cost efficiency, and energy efficiency in
the future.

5 Conclusion

Granular resource heterogeneity offers new avenues for
responsive, cost-effective, and scalable computing. Our
prototype hiresperf5 demonstrates how to explore
microsecond-level resource demands. We also discussed
how such insights can guide scheduling, dynamic resource
sharing, and modular disaggregation. Future endeavors can
harness these techniques for more efficient and powerful
platforms.
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