
Asynchronous Expert Parallelism for Efficient Large-Scale Mixture-of-Experts
Serving

Shaoyu Wang1, Guangrong He1, Geon-Woo Kim2, Yanqi Zhou3 and Seo Jin Park1

1 University of Southern California 2 University of Texas at Austin 3 Google

Abstract
Mixture-of-Experts (MoE) architectures offer the promise

of larger model capacity without the prohibitive costs of fully
dense designs. However, in real-world inference serving, load
skew across experts often leads to suboptimal device utiliza-
tion and excessive synchronization overheads. This paper
introduces Asynchronous Expert Parallelism (AEP), a new
paradigm that decouples layer execution from barrier-style
synchronization. By dynamically queuing tokens at each layer
(referred to as µ-queuing) and adaptively re-batching them
on demand, GPUs avoid waiting for straggling experts and
instead continuously process whichever layer is ready. This
asynchronous approach mitigates two major inefficiencies in
traditional expert-parallel systems: (1) idle GPU time while
waiting for the hottest expert, and (2) small-batch executions
on colder experts that waste memory bandwidth.

We implement these ideas in a serving system called Async-
MoE, which disaggregates attention from expert layers and
uses a defragging scheduler to reduce batch fragmentation.
Evaluations on prototype MoE models show that AsyncMoE
improves throughput by up to 2.7x compared to state-of-the-
art baselines, incurring a manageable latency penalty and
providing a cost-effective operating point. Furthermore, ex-
periments demonstrate nearly linear scalability to multi-node
settings, whereas the baseline system shows no throughput
increase even when the number of GPUs is doubled.

1 Introduction

It is well known that the accuracy of a DNN (including LLM)
is dependent on the model size [9], so high-performance mod-
els [20, 34] are rumored to use more than 1.5 trillion parame-
ters. Unfortunately, such scaling of models increases the serv-
ing costs. For example, open AI charges $150 for 1 million
token generation with GPT-4.5 [3], prohibitively expensive
for everyday applications.

To enable scaling of model sizes without increasing
the amount of computation for serving, Mixture-of-Experts
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FIGURE 1: Expert load skews causes inefficient GPU executions.

(MoE) models are receiving increasing attention [1, 2, 13, 15,
17,19,25,40]. MoE models are composed of many specialized
experts, only a few of which (e.g., 1-2) are activated for each
token, greatly reducing the amount of computation required
for each token. In theory, we can increase the model size for
better accuracy without increasing the amount of computation,
and it’s proven to reduce training cost greatly [17].

However, unlike training, today’s cost of MoE serving is
still suboptimal because of the load skews across experts 1.
As shown in Fig. 1, the load skew causes two serving effi-
ciency challenges: (1) accelerator stalling when experts are
sharded across GPUs [31] and (2) sub-optimal batch sizes
for expert layer computations. Many MoE systems, such as
SwitchTransformer [17], DeepSpeed-MoE [7], DeepSeek [13]
and GLaM [15], shard experts across GPUs to fit large MoE
models (expert parallelism). In such sharded deployment,
GPUs in charge of cold experts will get lower loads and will
be stalling while waiting for the slowest expert to finish. In
addition to GPU stalls, expert load skew also hurts GPU ef-
ficiency by preventing layers’ executions at optimal batch
sizes; cold expert computations are heavily bottlenecked by
the GPU’s High Bandwidth Memory (HBM) bandwidth for

1During training, expert loads are self-balanced with a loss function
tweak [40]. However, the workloads during serving are different from train-
ing, resulting in significant load skews across experts [31]
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FIGURE 2: Asynchronous Expert Parallelism. Schedulers in each
GPU freely selects layer to execute with accumulated tokens.

loading parameters, while hot experts run at too large of a
batch which hurts latency without any throughput benefits.

These inefficiencies arise because today’s serving systems
batch multiple requests and execute the fixed batch through
all layers. With the rigid batching across all layers, all-to-all
barrier-style communication before and after expert layers is
inevitable and causes inefficiency when loads are not perfectly
balanced. Strawman approaches like matching the skewed
loads by provisioning more GPUs for hot experts won’t work
well enough since expert load skews are known to shift dy-
namically [11, 21, 23, 31].

We propose to solve the efficiency challenges in MoE serv-
ing via Asynchronous Expert Parallelism (AEP), where
each device can execute and forward output independently
in an asynchronous manner (Figure 2). The key technique is
layer-wise scheduling: queuing tokens at the granularity of
individual layers (which we call µ-queuing) and adaptively
re-batching and executing just in time with the tokens so far
accumulated at the layer’s own µ-queue. Due to adaptive re-
batching, GPUs do not need to wait for barrier-style all-to-all
communication to finish. Instead, they stay busy as long as
enough load is offered at any layer. By colocating more than
one expert layer on a GPU, scheduler can multiplex layers
to prioritize execution of hot experts with enough input to-
kens and let cold experts to accumulate more tokens before
execution.

To demonstrate the efficacy of AEP, we built a prototype
MoE serving, AsyncMoE. With a small scale (8 experts, 8
GPUs) expert-compute-heavy workloads, our approach im-
proved throughput up to 2.7x from the state of the art serving
system with expert parallelism support (SGLang [49]), with a
penalty on higher inter-token latency. On an extended scale
(16 experts, 16 GPUs), AEP showed almost linear scaling
of throughput while SGLang with standard EP showed no
throughput increase when scaled from 8 GPU settings.

We make following contributions:
• We propose a new parallel serving method, asynchronous

expert parallelism, which can avoid many of limitations
of expert parallelism while retaining the its benefits of
better scalability with low communication overheads.

• We design and implement a new MoE serving system,
AsyncMoE, which supports asynchronous expert paral-
lelism (AEP). We address several challenges in realizing
AEP: (1) token-level dependency tracking (2) queuing
delay minimization (3) high performance asynchronous
communication.

• We characterize workloads that can most benefit from
AEP.

• We open-source our serving system, AsyncMoE, for pub-
lic use.

2 Background and Motivation

2.1 Efficiency Challenge in MoE Serving
The Mixture-of-Experts (MoE) architecture enhances the effi-
ciency and scalability of large language models by selectively
activating only a subset of specialized sub-models, called ex-
perts, for each input. A routing layer determines which experts
are most relevant, allowing for a significant reduction in com-
putational overhead while enabling the training of models
with billions of parameters. By integrating specialized expert
layers into transformer architectures, MoE achieves higher
performance without increasing computing costs than dense
models.

Early MoE research focused on leveraging this sparsity
for improved accuracy without increasing FLOPs per to-
ken [15,17,51,52]. For instance, the Switch Transformer [17]
explored scaling to a large number of experts (up to 2048)
while maintaining the same activated parameter size, demon-
strating that this could yield higher model accuracy within
the same training compute budget. To effectively manage
and utilize such numerous experts, expert parallelism (EP)
was introduced, distributing individual experts across differ-
ent hardware devices (e.g., GPUs). This distribution strategy
is crucial for enabling computationally feasible training and
inference with large-scale MoE models.

However, a key practical challenge arises with expert par-
allelism: expert load imbalance. Tokens within a processing
batch are often routed unevenly, causing some experts (and
their corresponding devices) to receive significantly more to-
kens than others. During training, this imbalance was often
considered manageable. Mitigation techniques such as auxil-
iary load balancing losses [30,39], strategies allowing experts
to drop excess tokens [15], routing by expert’s choice [51] and
the use of very large batch sizes helped suppress the negative
impacts of load skew.

Since the widespread deployment of large models begin-
ning around 2023, the operational cost of serving inferences
has gained critical importance, often outweighing training
costs. In this serving context, expert load imbalance poses a
serious impediment to efficiency when using EP. The load
distribution patterns observed during serving often differ sig-
nificantly from those during training and can shift dynami-
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FIGURE 3: Execution throughput of a single expert layer with
different batch sizes on A100 40GB.
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FIGURE 4: (a) expert load skew of a single iteration and (b) resulting
GPU stall time fraction while serving Mixtral 8x7B with databricks-
dolly-15k dataset at 100 req/s input rate on DGX A100 40GB (8x
A100 40G with NVSwitch) using SGLang with expert parallelism.
Mixtral 8x7B has 32 decoding blocks and 8 experts per block.

cally based on the input workload characteristics, nullifying
training-time optimizations like auxiliary losses [31]. Typ-
ically, serving workloads exhibit both persistent load skew
(some experts are consistently favored) and transient, request-
dependent skew [11, 21, 23, 31].

This expert load skew introduces two primary efficiency
challenges during MoE serving with EP. First, it prevents
expert layer computations from running at optimal batch
sizes on all devices. Experts receiving few tokens ("cold ex-
perts") operate with small batch sizes. At these low batch sizes,
GPU computation is often bottlenecked by the time taken to
load expert weights from High Bandwidth Memory (HBM),
leading to underutilization of the GPU’s computational units.
Figure 3 shows that increasing batch size increases through-
put almost linearly until the batch size of 128, suggesting that
any executions with smaller batches are wasteful.

Second, the group communication required by EP (all-to-
all or all-gather operations to exchange tokens before and
results after the parallel expert layers) introduces significant
stalling when load skew is present. Experts receiving many

tokens ("hot experts") take considerably longer to complete
their computation. This creates a "straggler" effect, where
all other devices must wait idly for the device hosting the
hottest expert. This waiting time directly translates to lost
GPU utilization, sometimes accounting up to 70% of GPU
time in skewed scenarios (see Figure 4). Crucially, simply
increasing the overall batch size to improve the per-expert
computational efficiency (addressing the first challenge) can
exacerbate this straggler problem, as it increases the execution
time variance between the hottest and coldest experts.

Faced with these efficiency challenges inherent to EP under
load skew, developers of prominent recent MoE models such
as Mixtral [25], Grok [2], and DBRX [1] have often employed
Tensor Parallelism (TP) instead of EP for the expert layers. In
TP, each expert’s parameters are sharded across all participat-
ing GPUs. Since every GPU processes a piece of every expert,
the computational load is perfectly balanced across devices,
eliminating the straggler problem caused by uneven token
distribution. However, TP introduces its own significant com-
munication overheads, requiring frequent and high-volume
data exchanges between GPUs for each expert computation.
Furthermore, while TP balances load across GPUs, it may
not fully resolve the computational inefficiency since cold
experts still execute at small batch sizes. Primarily due to the
high communication costs, TP-based MoE implementations
struggle to scale efficiently beyond a single node (typically 8
GPUs connected via high-speed interconnects like NVLink).
This limitation motivates the search for more scalable and
efficient serving strategies for large MoE models.

2.2 Disaggregating Prefill from Decoding
Disaggregating the prefill phase from decoding has be-
come increasingly standard in large-scale LLM serving sys-
tems [22,26,32,36,43,50]. The reason is that prefill typically
faces tighter time-to-first-token (TTFT) requirements and is
often compute-bound, so it can take advantage of more ag-
gressive parallelization (e.g., intra-operator parallelism) to
achieve low latency. By contrast, decoding—especially when
it must generate multiple tokens per request—tends to be more
HBM-bandwidth-bound and exhibits smaller, frequent com-
putational steps. This mismatch between the phases causes
significant interference when they are colocated on the same
GPU, making it harder to meet both TTFT and time-per-
output-token (TPOT) targets simultaneously [4, 50]. Thus,
by separating prefill onto its own GPUs, the system can tailor
resource allocation and model parallelism strategies to pre-
cisely satisfy TTFT constraints, leaving the decoding side free
to concurrently maximize throughput [50]. However, while
prefill can be readily scaled up to utilize GPUs effectively,
achieving good GPU efficiency for decoding is much more
challenging, particularly in expert-parallel MoE architectures,
where routing and load imbalance introduce extra complex-
ity. Therefore, this paper concentrates on tackling the harder
problem of high-throughput decoding, with a specific focus
on optimizing expert parallelism in MoE-based LLMs.
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2.3 Trends of Efficient Attention Mechanism
The attention mechanism’s high memory bandwidth and ca-
pacity demands have made it a primary bottleneck for extend-
ing context length in LLMs. Consequently, numerous efforts
focus on reducing its resource consumption.

A major trend involves evolving from standard Multi-Head
Attention (MHA) [42] to variants like Grouped-Query At-
tention (GQA) [5] and Multi-Query Attention (MQA) [38].
By sharing Key (K) and Value (V) projections across query
heads (partially in GQA, fully in MQA), these methods
substantially reduce the size of the memory-intensive KV
cache. Other architectural ideas like Multi-Layer Attention
(MLA) [13] explore cross-layer information processing. Com-
plementary to architectural changes, KV cache quantization
reduces the precision of stored K/V tensors (e.g., to INT8 or
lower) [18, 44, 47], further decreasing memory footprint and
bandwidth usage.

For extremely long contexts exceeding device memory, ef-
ficient KV cache management strategies have been suggested.
Techniques like InfiniGen [29] employ intelligent offloading
and management to handle vast KV caches with bounded
memory growth, mitigating the latency penalties of naive
offloading to slower memory tiers. Furthermore, research ex-
plores specialized hardware, such as Processing-in-Memory
(PIM) [27], which performs computations closer to memory to
alleviate the data movement bottleneck inherent in attention.

As these diverse optimizations make attention more effi-
cient, we anticipate that the primary performance bottleneck,
particularly in Mixture-of-Experts (MoE) models, will shift
towards the execution of the large expert layers.

2.4 Our Approach: Asynchronous Expert-
Parallel Decoding

To address the efficiency challenges in large-scale MoE serv-
ing, we propose asynchronous expert parallelism, where
each device can execute and forward output independently
in an asynchronous manner. The key technique is layer-wise
scheduling: queuing tokens at the granularity of individual
layers (which we call µ-queuing) and adaptively re-batching
and executing just in time with the tokens so far accumulated
at the layer’s own µ-queue. Due to adaptive re-batching, GPUs
do not need to wait for barrier-style all-to-all communication
to finish. Instead, they stay busy as long as enough load is
offered at any layer. By colocating more than one expert and
layer on a GPU, scheduler can multiplex layers to prioritize
execution of hot experts with enough input tokens and let cold
experts to accumulate more tokens before execution.

Despite the advantages offered by the layer-wise schedul-
ing, three key challenges must be addressed to achieve optimal
performance.

1. Token-level dependencies need to be carefully handled
to preserve the semantics of the Top-K gating function.
This must be achieved while allowing tokens from dif-
ferent sequences to be processed independently, thereby

FIGURE 5: System architecture of AsyncMoE.

maintaining efficiency.
2. Having many layers that can be executed asynchronously

can increase the queuing delay as tokens wait for their
turn for execution. The layer placement and scheduling
algorithm should be able to minimize queuing delays to
ensure low latency and high throughput.

3. An effective communication mechanism is required in
replacement of all-to-all. This mechanism must facilitate
the transfer of tokens between nodes without causing
device stalls.

In the following section, we will discuss how we addressed
these challenges.

3 Design

To demonstrate the benefits of asynchronous expert paral-
lelism, we designed a prototype MoE inference serving sys-
tem, AsyncMoE.

3.1 Overview
AsyncMoE is a Mixture-of-Experts (MoE) large language
model (LLM) serving system compatible with vLLM [28].
AsyncMoE splits MoE models into granular layers, allowing
each layer to be individually scheduled asynchronously with-
out being blocked by group communication across parallel
GPUs. Specifically, we assume MoE architecture with mul-
tiple decoding blocks, each composed of an attention layer
followed by a set of expert layers. We consider MoE’s gat-
ing and top-K merge operators as part of the attention layer.
Each decoding block is also often called one layer in some
literature.

AsyncMoE supports data parallelism (DP) for attention lay-
ers and expert parallelism (EP) for expert layers, which aligns
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with today’s standard for MoE deployments [14,15,37]. How-
ever, AsyncMoE does not use blocking group communication
before or after these parallel-execution layers.

As shown in Figure 5, AsyncMoE is composed of two
types of services: coordinator and runtime. The coordinator
is a CPU-run service, which may reside on the same host
machine as GPUs (for small-scale deployments) or indepen-
dently (for large-scale deployments). The coordinator consists
of three components: API server, load balancer, and cluster
manager. The API server handles incoming serving requests
and maintains request states throughout the auto-regressive de-
coding process. It also includes a tokenizer and de-tokenizer.
The load balancer monitors GPU memory usage across atten-
tion data-parallel (DP) ranks and assigns each new request to
the rank with the most available memory. Once assigned, a
request remains bound to the same DP rank for its entire auto-
regressive decoding process, ensuring that all attention-related
computation can reuse the key-value cache on the same GPU.
The cluster manager oversees runtimes for GPUs, including
setting up communication channels during initialization and
tracking GPU memory usage, which is then provided to the
load balancer. Together, these components serve as a central-
ized controller in AsyncMoE to manage requests and workers.

Another component of AsyncMoE is the runtime. Async-
MoE assigns a separate runtime instance to each GPU. Each
runtime handles the execution of several layers assigned by
the coordinator. The runtime receives tokens from another
runtime or tokenizer in the API server (for new requests), exe-
cutes the appropriate layer for each token, and forwards tokens
to either another runtime or the API server (for completed
requests). The runtime manages layer-wise token queuing
with dependency tracking (§3.2), GPU task scheduling (§3.4),
and efficient communication between runtimes (§3.5). To
minimize overheads, each token’s input/output tensor data are
kept in GPU memory and transferred directly to another GPU.
The runtime manages these tensor data with metadata on the
CPU side.

3.2 Execution engine
The core of the runtime is the execution engine, which asyn-
chronously accumulates tokens and executes layers with the
correct input on its GPU. Unlike typical MoE serving systems
that rely on group communication, AsyncMoE allows flexible
asynchronous executions, which may reorder tokens in a ran-
dom fashion throughout an iteration. Therefore, AsyncMoE
directly manages incoming tokens by associating each token’s
tensor data with metadata. By referring to this metadata, the
execution engine can select the optimal layer for execution
and supply the correct input tensor data.

Execution engines retain input tensor data on GPUs to
avoid CPU-GPU data transfer overheads and track these ten-
sor data with metadata on the CPU. Table 1 lists the infor-
mation tracked for each token. RequestID accompanies each
token throughout the auto-regressive decoding process, allow-
ing us to associate the generated output token with the user

Metadata for Tokens

• RequestID: used for tracking generated output token
and attention DP rank

• LayerID: indicates the layer this token should be used
as input for. It is composed of <block#> + <expert#> or
<attn DP rank>

• Tensors[]: reference to input tensors on the GPU
• Prefill_length: used for attention
• Topk_weights: used for top-k token merging

TABLE 1: List of token metadata items

request. This is important since tokens may shuffle around due
to asynchronous queuing and execution, making it impossible
to infer each token’s request ID based solely on its index in
the global batch. Similarly, LayerID is set before forwarding
a layer’s output to the next layer, indicating the target layer
for execution with this token. If the target layer is an expert
layer, LayerID is composed of <block#> + <expert#>. If it
is an attention layer, LayerID comprises <block#> + <attn
DP rank>. LayerID is first used by the communicator to de-
termine the next destination of the token and subsequently
used by the receptor to queue the received token into the
correct queue. This metadata structure retains references to
input tensor data on the GPU (Tensors[]), which can be
more than one if the target layer requires multiple input ten-
sors. In addition to these three token management metadata
items, a token may also carry additional metadata required
for attention execution or MoE’s top-K token merging.

Using the metadata, the execution engine processes input
tokens in 4 stages as shown in Figure 6. First, receptor is
the entry point for incoming token batches fetched from the
communicator. Receptor segregates the received metadata of
tokens by the LayerID and enqueue them to the correspond-
ing layers’ queues. Second, whenever GPU becomes idle,
scheduler picks the layer whose queue should be drained for
execution. Third, executor drains the selected queue, trans-
fer necessary metadata to the GPU (e.g., prefill length for
attention layers), and launch corresponding kernels for execu-
tion. Here, executor launches our custom CUDA kernel for
preparing a contiguous input token batch from many individ-
ually arrived token batches. Lastly, when execution on GPU
is finished, dispatcher re-labels the output tokens with next
LayerIDs, which are then forwarded to the communicator.

Top-K support: Supporting top-K (K > 1) requires addi-
tional mechanisms beyond those described above. After rout-
ing (the last operator in the attention layer in AsyncMoE),
a token is duplicated K times and dispatched to K different
experts for processing by the dispatcher. These duplicated to-
kens serve as input tensors for the attention of the next block
(whose first operator is the top-K merge operator). Until all
inputs are ready, we cannot execute the attention layer. To en-
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FIGURE 6: The data flow of a token batch within runtime involves
four steps: (1) receptor puts incoming tokens into the corresponding
layer-specific µ-queues, (2) scheduler picks the optimal layer for
execution, (3) executor runs the selected layer’s computation on
GPU, and (4) dispatcher assigns next destination for tokens

sure the scheduler and executor are dealing only with “ready”
tokens whose inputs are already on the GPU, the receptor re-
tains the incomplete tokens until all input tensors have arrived
and are ready. When a new token batch arrives, the receptor
inspects whether a token is ready by itself. If the token needs
more than one input for the next layer execution, it holds the
token in a token pool. At the token pool, previously duplicated
tokens (identified by the tuple <RequestID, LayerID>) are
merged into a single token. Once a token is merged and has
all input tensors ready, the receptor moves the token to the
corresponding µ-queue for scheduling.
Executor details: Executor directly controls the GPU. Once
the layer to execute is selected by scheduler, it performs for-
ward computation for the selected layer. KV cache manage-
ment is also handled by executor. AsyncMoE leverages paged
attention [28], and each executor manages its GPU’s block
table that maps requests to key-value (KV) cache blocks. Al-
though layers operate independently, all attention layers on
the same GPU share one page table as KV cache is are iso-
lated for each layer. A new KV slot is allocated for a token
only upon entering the first layer, allowing block table reuse
across layers and reducing allocation overhead. While all lay-
ers follow the same execution model, the first attention layer
requires additional processing to convert input tokens into
embeddings.

Furthermore, the runtime with the first attention layer in-

cludes a sampler, which sample out previous iteration’s output
tokens from embeddings. We place a separate sampler on each
GPU with the first attention layer to avoid extra communica-
tion overhead. The sampler is treated equivalently to other
attention layers and must be scheduled before execution.
Dispatcher details: After each execution, the output tensors
should be forwarded to the another runtime and GPU that
are in charge of the next layer of the model. The dispatcher
coordinates this output forwarding process. After attention
layer execution (thus, next is an expert layer), dispatcher iden-
tifies each token’s assigned expert and permutes tokens by
expert ID to group them. The permuted tokens are then split
into several smaller batches and sent to appropriate expert
workers over the network based on expert placement. In ex-
pert workers, tokens are instead permuted by their assigned
attention DP rank, as their context remains on the same at-
tention worker. The dispatcher also increases the layer ID of
each batch by one, reflecting their transition to the next layer’s
attention module.

3.3 Layer placement
AsyncMoE’s default placement strategy disaggregates atten-
tion layers from expert layers and colocates all layers of each
type across all decoding blocks. For example, a GPU/runtime
handling Expert 1 will host all Expert 1 layers across all de-
coding blocks.

We colocate each layer type across all decoding blocks for
several reasons, as done by many other MoE systems [14,
15, 37]. An alternative placement strategy would be sharding
models across decoding blocks, essentially forming pipeline
parallelism (PP). We chose not to shard models into multiple
pipeline stages because pipelining can cause load imbalance
and result in high latency. Instead of PP, allocating GPUs
for more data parallelism (DP) for attention or expert par-
allelism (EP) for experts can reduce iteration time. While
PP may reduce queuing delay for the first token decoding, it
introduces higher inter-token latency, which is more signifi-
cant for auto-regressive decoding. However, when there are
abundant GPUs, AsyncMoE can utilize those GPUs to reduce
collocation and form multiple pipeline stages.

One of the key concerns with colocating multiple layers
onto a single GPU/runtime is queuing delay. By colocating
across all blocks, we can optimize scheduling by exploiting
the precedence and ordering of layers (§3.4). Since tokens
proceed to higher block#, the scheduler can try to congregate
most tokens to one or two consecutive blocks, minimizing
queuing delay for the majority of tokens.

We chose to disaggregate attention from experts to enable
further layer-type-specific optimizations. Disaggregated de-
ployment allows us to use a different number of GPUs for
attention and expert layers. We observed that for some longer
context generation tasks, KV-cache space in the GPU mem-
ory limits the number of concurrent requests in the decoding
process, leading to GPU under-utilization during expert layer
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FIGURE 7: µ-queue depth of an attention runtime with FLFS
scheduling. Input rate is 200 requests for each second. Trace is
collected from Figure 11 top-2 setting.

computation. By allocating more GPUs for attention, we can
achieve higher throughput without needing additional GPUs
for experts. Additionally, due to the memory capacity and
bandwidth-intensive nature of attention layers, there are in-
creasing efforts to adopt heterogeneous hardware for attention
layers. AsyncMoE can naturally adopt this improved hard-
ware for attention. Finally, by disaggregating, we can better
understand the benefits of Asynchronous Expert Parallelism
in improving the efficiency of expert computation.

We considered developing a placement optimizer for a
given cluster setting, but it is beyond our focus on validating
the benefits of AEP. However, AsyncMoE opens up opportu-
nities for more flexible placement optimization, especially in
heterogeneous clusters.

3.4 Defragging Scheduler
Each runtime in AsyncMoE hosts multiple layers. Whenever
the GPU becomes available, the scheduler selects one of the
layers for the next execution. We found that the selection
strategy can significantly impact the latency and throughput
of AsyncMoE.

There are two strawman strategies that motivated Async-
MoE’s defragging scheduler. The first strawman is selecting
the layer with the most tokens in the queue, which we call
the “most-token-first-serve (MTFS)” strategy. At first glance,
prioritizing the layer with the most tokens over layers with
fewer tokens sounds reasonable, as it can reduce queuing
delay for more tokens. However, this strategy causes an in-
teresting problem: batch fragmentation. Figure 7 shows an
example of the queue depth of each layer and their executions
over time. In AsyncMoE, a batch of tokens is distributed to
many GPUs for attention DP. Then, some attention GPUs will
return their attention output earlier than others. Conversely,
the attention output batch is split and distributed to many
expert GPUs. Because AsyncMoE doesn’t rely on blocking
group communication, which merges all messages from all
nodes, token batches naturally get fragmented unless they
sit in the queue long enough to wait for more tokens. The
most-token-first-serve strategy doesn’t help here. It tends to
leave out the last slice of tokens for a layer since the next
layer may accumulate more tokens by then. Every layer in
the execution pipeline will leave out these orphans, leading

Algorithm 1 Defragging Scheduler

1: Input: NB: NumBlocks, NE : NumExperts, Q[l,g]: TokensIn-
Queue, δ: WeightDecay

2: Output: (b∗,e∗): Optimal (block, expert) to schedule
3: Init Scores[NB][NE ]← 0
4: for b← 0 to NB−1 do
5: LScore← 0 ▷ Calculate lookahead score
6: for k← 1 to K do
7: b′← (b+ k) mod NB

8: TotalTokens← ∑
NE−1
e′=0 Q[b′][e′]

9: LScore← LScore+
(

TotalTokens
Ne

)
×δk

10: end for
11: for e← 0 to NE −1 do ▷ Add lookahead with #tokens
12: if Q[b][e]> 0 then
13: Scores[b][e]← LScore+Q[b][e]
14: end if
15: end for
16: end for
17: (b∗,e∗)← argmaxb,e Scores[b][e] ▷ Pick layer with max score
18: return (b∗,e∗)

to disorganized and fragmented batches. This is not ideal, as
it increases queuing delay and lowers execution efficiency.

The opposite strawman is the first-layer-first-serve (FLFS)
strategy, which prioritizes earlier layers (e.g., lower block#).
By strictly prioritizing any earlier layer with some tokens,
FLFS aggressively defragments execution batches and tries
to maintain all tokens within one frontier layer. This extreme
strategy performs reasonably well thanks to the autoregressive
decoding; a well-merged wave of tokens will benefit the next
iteration as well. However, it still has some drawbacks. Any
newly introduced tokens (new requests) will take priority until
they are merged into the main wave of tokens. With many
short requests, the system may live lock and can hardly finish
any requests. A better behavior would be for these tokens to
wait until the main wave picks them up in the next iteration.

From these two strawman strategies, our scheduling algo-
rithm aims to achieve a balance: promoting defragmentation
like FLFS while considering queue occupancy like MTFS,
thereby preventing both excessive fragmentation and inter-
ruption by new requests. Algorithm 1 presents a simplified
version of our defragging scheduler algorithm. It calculates
a score for each layer by combining the number of tokens
currently waiting in that specific queue with a weighted looka-
head score. The lookahead score estimates the density of
tokens in subsequent layers down the pipeline, decaying the
contribution of farther layers. By incorporating this looka-
head, the scheduler favors executing layers that precede a
dense wave of upcoming tokens, encouraging consolidation
and forward progress. Unlike FLFS, it still can still leave out
some fragments to limit inefficient small-batch executions.

This combined approach allows the scheduler to dynam-
ically adapt, processing larger, consolidated batches when
possible while still efficiently managing the flow of tokens
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across all layers and mitigating excessive queuing delays.

3.5 Communicator

Each runtime in AsyncMoE includes a communicator mod-
ule that manages point-to-point (P2P) communication across
runtimes. To take advantage of the fast GPU interconnect
and avoid PCIe bottlenecks, AsyncMoE uses NCCL as the
primary transport. However, there are two challenges in using
NCCL: sender/receiver synchronization and variable tensor
sizes.

Sender's
CPU

Receiver's
CPU

Sender's
GPU

Receiver's
GPU

Send Metadata
Message
Queue
(ZMQ) Consume

Message

Launch 
NCCLSend

Launch
NCCL Recv

Send Tensor

NCCL
Recv

NCCL
Send

Send
Batch

Receive
Batch

Phase 1

Phase 2

FIGURE 8: The communication in AsyncMoE to transfer one batch
between the sender and the receiver

With NCCL’s P2P API, both the sender and receiver GPUs
must invoke the NCCLSend and NCCLRecv kernels simultane-
ously to initiate data transmission. Additionally, the receiver
must know the sender GPU rank and tensor size in advance.
In AsyncMoE, due to varying user requests and scheduling, a
runtime may receive batches with a dynamic number of tokens
from many other GPUs at any time. Therefore, a mechanism
is needed to set up this transfer before initiating NCCL.

Figure 8 illustrates our solution: a two-phase communica-
tion process. Before initiating NCCL transmission (Phase 2),
the sender sends metadata to the receiver through a message
queue library, ZeroMQ [10], on the CPU (Phase 1). Each com-
municator maintains a message queue to iteratively consume
metadata from any senders. Upon receiving new transmission
metadata, it creates a NCCL buffer of the size specified in the
metadata.

After exchanging metadata, NCCL transmission (phase
2) begins. The sender and receiver launch NCCLSend and
NCCLRecv respectively, where the CPU side initiating the
NCCL kernels on GPU streams. After launching the NCCL
kernels, the CPU side proceeds to the next transmission task
(such as checking the ZeroMQ queue) without waiting for
the NCCL kernels to finish. Before releasing the received
tensor to the scheduler, the communicator synchronizes with
the GPU to ensure that the NCCL transmission is complete.
The sender does not need to synchronize since the batch is no
longer used after transferring. Consequently, a single-threaded
communicator can send or receive multiple batches concur-
rently.

4 Implementation

We implement AsyncMoE from scratch, comprising 6K lines
of Python and 4.8K lines of C++ code. The runtime is pri-
marily written in Python to take advantage of the highly opti-
mized model execution infrastructure provided by vLLM [28].
While the model executor resides in Python, the communica-
tor, receptor, scheduler, and dispatcher of the execution engine
are developed in C++ to reduce the overhead associated with
layer-wise scheduling. These components expose interfaces
to Python through pybind11. The scheduler and executor ex-
ecute within the main Python thread, while the receptor and
dispatcher run on dedicated POSIX backend threads to fa-
cilitate efficient communication-computation overlap. The
usage of C++ helps to bypass python’s Global Interpreter
Lock (GIL) and make all component operate concurrently.

CUDA Graphs. We build CUDA Graphs with pytorch
to reduce the launching overheads of multiple small CUDA
kernels for small batch sizes in the attention engine. Conven-
tionally, serving systems record G graphs for the entire model,
each corresponding to a disjoint batch size range. In Async-
MoE , however, scheduling and execution are performed at
the layer level. We record G graphs for every layer, leading
to L×G layer-wise graphs, where L denotes the number of
layers. It incurs huge memory footprints as each graph main-
tains static data buffers. We alleviate the memory pressure by
sharing the input buffer across all graphs. Meanwhile, inter-
mediate and output buffers are allocated in the runtime, we
track these buffers to get the results of computation.

Although CUDA Graph can effectively accelerate the atten-
tion engine when batch size is small, they are less beneficial
for expert computation in AsyncMoE. Execution in the expert
engine is dominated by heavy GEMM (General Matrix Multi-
plication) kernels, interleaved with a few lightweight kernels.
The CPU is able to asynchronously launch kernels during the
first GEMM kernel, thereby minimizing kernel launch latency.
In AsyncMoE, we observe this kernel launch latency smaller
than the combined overhead copying data to CUDA graph
input buffers.

Batch Management in Attention Executor. The attention
executor imposes additional requirements on the input batch.
Specifically, it allocates new key-value slots for incoming
tokens and locates their corresponding key-value pages. Key-
value metadata along with the current decoding lengths of the
associated requests are then transferred from CPU to GPU
memory, where they are later consumed by the paged atten-
tion kernels. After attention computation, the expert indices
and weights for each token must be copied back from GPU
to CPU to allow the dispatcher to correctly route the tokens.
This execution workflow involves many small memory trans-
fers between CPU and GPU. To optimize performance, we
fuse these small copies into larger batched transfers, thereby
reducing kernel launch overheads. Additionally, data trans-
fers are offloaded to a dedicated CUDA stream, ensuring that
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GPU 8 × NVIDIA A100-SXM4-40GB
Interconnect NVSwitch (600 GB/s for each GPU)

Network 4 × 100 Gbps Elastic Fabric Adapter [6]
Driver CUDA 12.4, cuDNN: v9.1.0, NCCL 2.22.3

CPU 2 × AMD EYPC 64 cores @ 1.5 GHz
RAM 988 GB

OS Ubuntu 22.04.1 (Linux 6.8.0-1021-aws)

TABLE 2: AWS P4 instance configuration.

GPU 8 × NVIDIA A100-SXM4-80GB
Interconnect NVSwitch (600 GB/s for each GPU)

Driver CUDA 12.8, NCCL 2.25.1
CPU 2 × AMD EYPC 64 cores

RAM 1800 GB
OS Ubuntu 22.04 (Linux 6.8.0-52-generic)

TABLE 3: Lambda instance configuration.

communication does not block the main execution thread. We
introduce and analyze the details in §5.4.

5 Evaluation

Our evaluation aims to answer the following questions:
1. Does AsyncMoE provide better throughput and latency

than the state-of-the-art expert-parallel serving system?
2. On what kinds of workloads does AEP have an advantage

over EP?
3. Does AEP allow better scalability than TP or standard

EP?
4. How much does defragging scheduler help on throughput

and latency?
5. How much overheads does layer-wise scheduling incur?
To answer the questions above, we measured perfor-

mance of AsyncMoE and state of the art serving system,
SGLang [49]. For most evaluation (§5.1, §5.3), we bench-
marked the decoding performance of AsyncMoE and SGLang
with Mixtral 8x7B which has 8 experts on the hardware listed
in Table 3. To mimic the realistic expert load skew, we profiled
expert load distribution using Dolly dataset [12] and fitted it
to an exponential distribution. We replaced the routing layer
in Mixtral 8x7B with our own routing which randomly selects
experts based on the profiled exponential distribution.

For scalability benchmark (§5.2), we mimicked the Llama-
V4 by increasing the number of experts of Mixtral 8x7B to
16 and using top 1 routing. This 16 experts model is deployed
to 2 instances of AWS p4dn machines (Table 2), totaling
16 GPUs over datacenter networking.2 We also replaced the
routing layer with the exponential distribution modeled by
profiling Mixtral 8x7B [25] with Dolly dataset.
Adjusting attention-expert intensity: To emulate realistic,

2Lambda cluster in Table 3 was not designed for large scale inference
and has very slow networking (∼10 Gbps).

production-scale MoE serving workloads on our limited-scale
hardware, we rebalance the load on attention and expert layers
in two ways.

First, we modify Mixtral’s attention mechanism from
Grouped-Query Attention (GQA) [5] to Multi-Query Atten-
tion (MQA) [38] to mitigate KV cache space limitations.
With the original GQA, KV-cache capacity constraints both
systems from processing many requests concurrently, result-
ing in roughly similar performance. As discussed in §2.3,
there is a plethora of research on improving KV cache effi-
ciency in attention mechanisms. Notably, DeepSeek proposes
Multi-head Latent Attention (MLA) [14], which compresses
KV cache usage by 10x without compromising model perfor-
mance. Hence, we believe reducing KV cache contention via
MQA is a reasonable approach to highlight AEP’s advantage
over standard EP for emerging MoE models.

Second, we maintain a balance between attention and ex-
pert computation intensity by using relatively short input
and output token lengths. Based on DeepSeek and other pro-
duction models, we believe expert computation is consid-
erably more intensive than attention computation for large
production-scale MoE models [14, 33]. Unfortunately, due to
our benchmark hardware limitations, we use a smaller version
of Mixtral, namely Mixtral 8x7B, whose expert computation
is about 2x lighter than the larger Mixtral 8x22B (Figure 3).
With long-context workloads, we observe that attention com-
putation dominates in Mixtral 8x7B. Therefore, we focus on
shorter decoding workloads so that the expert computation
bottleneck is not obscured by the small MoE model.

Workloads: We compare the performance of three different
types of decoding workloads:

• Short: input [30, 70], output [70, 130]
• Medium: input [50, 150], output [50, 250]
• Reasonable: input [100, 300], output [100, 500]
For each workload, we generate new requests through a

Poisson arrival process with a given rate, and each request
picks its input length and output length with uniform random
selection from the ranges listed above.

5.1 Performance over various workloads
We begin by comparing AsyncMoE with our baseline serving
system, SGLang, using Mixtral 8x7B with 8x A100 80GB
GPUs on a single host. AsyncMoE disaggregates attention
layers to 4 GPUs with DP and uses the other 4 GPUs for
expert layers with EP. SGLang uses DP for attention layers
and EP for expert layers over all 8 GPUs.

Figure 9 presents a high-level comparison of AsyncMoE
and our baseline SGLang under various routing (Top-1 and
Top-2) and workload configurations. Each subplot in Figure 9
plots the achievable token throughput on the x-axis against
the corresponding average inter-token latency (ITL) on the y-
axis. Across all scenarios in Figure 9, AsyncMoE consistently
achieves higher throughput than SGLang.
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(A) Top-1 with short workload (B) Top-1 with medium workload (C) Top-1 with reasonable workload

(D) Top-2 with short workload (E) Top-2 with medium workload (F) Top-2 with reasonable workload

FIGURE 9: Overall performance comparison between AsyncMoE and SGLang. Shows achievable throughput (x-axis) and corresponding
observed inter-token latency (y-axis) under different routing and workload settings.

As depicted in Figures 9 (a)–(c), AsyncMoE consistently
achieves higher throughput than SGLang when using Top-1
routing across all three request-length categories: 2.7x, 2.3x,
and 2.0x for short, medium, and reasonable workloads corre-
spondingly. We attribute this improvement to AsyncMoE’s
ability to dynamically re-batch tokens at each GPU and expert,
thereby reducing GPU stalls even when the load distribution is
skewed. However, under low loads, SGLang shows lower ITL
than AsyncMoE. This is because of layer-wise scheduling
overheads and attention disaggregation.

A similar trend persists under Top-2 routing, shown in Fig-
ures 9 (d)–(f). AsyncMoE retains its throughput advantage
over SGLang, although the level of throughput improvement
is less significant than Top-1. We suspect two reasons on this.
First, Top-2 routing’s increased expert activation percentage
(from 12.5% to 25%) partially tempers load skew by distribut-
ing tokens more evenly among the experts. Second, Top-2’s
token merge operation needs to wait for both outputs from
experts, creating a partial synchronization point and reducing
the benefit of asynchronous expert parallelism.

5.2 Scalability (multi-node)
We next examine how asynchronous expert parallelism per-
forms when scaling to larger model sizes and higher paral-
lelism, especially to a multi-node setting with datacenter net-
working. This benchmark is to help on predicting performance
for production-scale models which has tens or hundreds of
experts on many expert-parallel GPUs.

Figure 10 plots the token throughput on the x-axis against
the average inter-token latency (ITL) on the y-axis for a
scaled-up configuration, where both the number of experts

FIGURE 10: Performance comparison using medium workload and
top-1, under a scaled setting (16 experts on 16 GPUs). The two grey-
hollow markers represent the best performance under the one-node
setting using AWS.

.

and the number of GPUs are increased (16 experts and 16
GPUs across two nodes). We use medium workload and Top-
1 setting following Figure 9b. Compared to the baseline 8-
expert setup, this expanded deployment showcases notable
scalability characteristics.

When compared to SGLang with EP, AsyncMoE can
achieve 3x throughput improvement with a comparable ITL.
The throughput gap is larger than on the single node setting
with 8 experts and 8 GPUs, suggesting better scalability of
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FIGURE 11: Compare different schedule policy at 80% throughput.
Using MQA, medium length. across experts. Top-1: input rate 250.
Top-2h: input rate 150.

FIGURE 12: Request input and output rate for FLFS at input rate
250 under MQA, top-1.

AsyncMoE. With more experts, systems are more susceptible
to load skew, thus SGLang’s throughput didn’t scale even
with twice number of GPUs. On the other hand, AsyncMoE’s
throughput continues to increase, eventually achieving 1.92x
improvement.

At low input rates, AsyncMoE exhibits higher ITL com-
pared to SGLang, primarily due to the overhead introduced by
layer-wise scheduling. However, as the input rate increases,
the latency of AsyncMoE remains relatively stable, demon-
strating its ability to handle a larger volume of requests. We
continue to raise the input rate until the throughput reaches
saturation. Ultimately, the ITL stabilizes, indicating that the
system’s performance is bounded by the available KV cache
capacity.

5.3 Efficacy of defragging scheduler
We now assess the impact of our proposed defragging sched-
uler on system throughput and latency under different routing
strategies, focusing on how the scheduler balances batch frag-
mentation and forward progress.

Figure 11 compares these scheduling policies when the sys-
tem operates at approximately 80% of its maximum achiev-
able throughput with defragging scheduler for two routing
modes: Top-1 (left) and Top-2 (right). Defragging scheduler
effectively minimizes batch fragmentation and shows both
lower ITL and higher throughput than maximum-token-first-
serve (MTFS) and first-layer-first-serve (FLFS) strategies.

schedule
5.1%

page table 20.8%

pre-process

6.5%

model52.8%

post-process

14.9%

(A) Attention Breakdown

schedule
9.0%

pre-process 9.6%
model76.2%

post-process

5.2%

(B) Expert Breakdown

FIGURE 13: The attention execution takes 2.7 ms in total while the
expert execution takes 0.8 ms.

Under FLFS, the scheduler always prioritizes lower-
numbered blocks (i.e., those earlier in the decoding sequence)
whenever there are tokens waiting in those queues. This ap-
proach effectively minimizes batch fragmentation but can
severely interrupt higher-block progress, especially if new
requests arrive continuously.

Figure 12 illustrates how FLFS can struggle when new
requests keep arriving for Top-1 routing. We plot both the
request input rate and the system’s request completion rate
over time. Notice that once FLFS focuses on an early block for
a batch of tokens, new arrivals preempt later blocks’ tokens,
creating persistent waiting at higher block layers. As a result,
the output rate falls behind even though the input rate remains
steady. By contrast, our defragging scheduler more evenly
coordinates resource usage across blocks and prevents long
stalls at higher block layers, increasing the output rate closer
to the input rate.

5.4 Execution breakdown
We conduct an in-depth investigation of the overheads intro-
duced by layer-wise scheduling and execution. In AsyncMoE,
each execution step comprises five primary stages:

• Schedule. The scheduler inspects the current queues and
selects one layer for execution. It drains the queue and
merges all tokens into one batch.

• Page Table. The table manager allocates new key-value
slots for incoming tokens and retrieves existing KV cache
pages for each token. This stage is absent in expert layers.

• Pre-processing. The executor prepares the necessary
data for execution, including transferring data from CPU
to GPU memory.

• Execution. The executor launches the appropriate ker-
nels to process a batch of tokens.

• Post-processing. Selected outputs from execution are
transferred from GPU to CPU memory to provide routing
information for the dispatcher. Tokens are permuted ac-
cording to either expert indices or attention data parallel
indices to facilitate batch transmission.

We sample one attention execution step and one expert
execution step from a benchmark with medium workloads
in Figure 9b and analyze the cost of each stage. The atten-
tion step takes 2.7 milliseconds, while the expert step takes
0.8 milliseconds. Figure 13 presents a detailed breakdown
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of an execution step for both attention and expert layers. In
the attention worker, page table management incurs signifi-
cant overhead, as each token must traverse the page table to
retrieve its associated pages. Post-processing is also costly,
as expert indices and corresponding weights must be trans-
ferred from GPU to CPU for dispatching following attention
execution. However, as the length of each token’s KV cache in-
creases, the cost of page table operations and post-processing
diminishes relative to attention execution, which eventually
dominates the execution step.

In contrast, during expert layer execution, the majority of
time is spent on kernel computation. This is because expert
kernels operate independently of metadata, and no results
need to be transferred back to the CPU for subsequent dis-
patching, resulting in minimal post-processing overhead.

Across both attention and expert layers, the scheduling
stage accounts for only a small fraction of the total time.
We attribute this efficiency to our highly optimized C++ and
CUDA implementation, which manages batches and token
hidden states with minimal overhead.

6 Related Works

6.1 MoE Serving Systems
Several systems have been proposed to optimize the serving
performance of MoE models to realize their reduced per-token
computational cost [14, 31, 37, 46]. DeepSpeed-MoE [37]
extends expert parallelism by introducing fine-grained ex-
pert sharding, where each expert can be further divided into
smaller slices, and proposes hierarchical all-to-all communica-
tion to support this finer granularity. Although this approach
improves scalability with a large number of accelerators, it
remains vulnerable to load imbalance caused by expert skew.

To mitigate this issue, DeepSeek-MoE [14], Lina [31],
and ExFlos [46] leverage profiling of token routing patterns.
DeepSeek-MoE and Lina duplicates frequently accessed (hot)
experts based on the profiled token distribution, while ExFlos
rearranges expert placement to maximize inter-layer token
locality and reduce all-to-all communication volume. De-
spite these optimizations, existing systems continue to suffer
from strict synchronization barriers imposed by all-to-all com-
munications and the under-utilization of accelerators due to
suboptimal batching in cold experts. In contrast, AsyncMoE
breaks this synchronization barrier and achieves higher GPU
utilization through asynchronous expert parallelism.

Another line of work focuses on enabling efficient MoE
serving under memory-constrained environments [8, 16, 24,
45]. To address the expanded memory footprint of MoE mod-
els, MoE-Offloading [16] places experts in CPU memory and
dynamically fetches the necessary experts to the GPU for
execution. MoE-Infinity [45] exploits the temporal locality of
accessed experts by caching a frequently used subset on the
GPU. Further advancements, such as Pregated-MoE [24] and

ReadME [8], introduce new router designs that provide expert
routing information for future layers ahead of time, thereby
enhancing the efficiency of fetching and caching. While these
works primarily target small-scale deployments where the
entire model cannot fit in GPU memory, their co-design prin-
ciples present interesting future directions for improving the
memory efficiency of AsyncMoE.

6.2 LLM Serving Systems
Beyond MoE-specific solutions, general LLM serving frame-
works such as Orca [48], vLLM [28], Sarathi-Serve [4], and
Llumnix [41] focus on efficient request batching and schedul-
ing to reduce serving latency. These approaches achieve high
throughput via aggressive batch formation, but they rely on
strict batching and incur overheads due to bulk collective
communication, which can undermine latency benefits. Dis-
aggregated serving designs like DistServe [50] and Split-
Wise [35] instead decouple the prefill and decoding phases to
handle their differing performance characteristics, concentrat-
ing mainly on optimizing decoding throughput and latency.
However, while disaggregation mitigates prefill–decoding in-
terference and boosts decode-phase efficiency, these systems
do not consider the unique challenges of MoE models, such as
expert load imbalance and inefficient token communications.

7 Conclusion

In conclusion, our proposed Asynchronous Expert Parallelism
(AEP) effectively addresses the GPU underutilization and
synchronization bottlenecks that commonly arise in expert-
parallel MoE serving. By introducing µ-queuing and a defrag-
ging scheduler, our system AsyncMoE re-batches tokens adap-
tively, reducing idle time and improving throughput. Evalu-
ations indicate that AsyncMoE can achieve up to 3× higher
throughput than state-of-the-art baselines, with minimal la-
tency overhead, and scales much better to multi-node con-
figurations. Taken together, these results affirm that AEP is
a promising approach to efficiently handle large-scale MoE
deployments.
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